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Abstract. In this paper, we establish the stability result for the k-cubic functional equation

2[k f (x + ky) + f (kx − y)] = k(k2 + 1)[ f (x + y) + f (x − y)] + 2(k4
− 1) f (y),

where k is a real number different from 0 and 1, in the setting of various L-fuzzy normed spaces that in
turn generalize a Hyers-Ulam stability result in the framework of classical normed spaces. First we shall
prove the stability of k-cubic functional equations in the L-fuzzy normed space under arbitrary t-norm
which generalizes previous works. Then we prove the stability of k-cubic functional equations in the non-
Archimedean L-fuzzy normed space. We therefore provide a link among different disciplines: fuzzy set
theory, lattice theory, non-Archimedean spaces and mathematical analysis.

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [45] concerning
the stability of group homomorphisms and it was affirmatively answered for Banach spaces by Hyers [25].
Subsequently, the result of Hyers was generalized by Aoki [5] for additive mappings and by Th.M. Rassias
[34] for linear mappings by considering an unbounded Cauchy difference. The paper [34] of Th.M. Rassias
has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of
functional equations. The interested readers for more information on such problems are referred to the
works [7–12, 26, 30, 36, 37].

The functional equation

2[k f (x + ky) + f (kx − y)] = k(k2 + 1)[ f (x + y) + f (x − y)] + 2(k4
− 1) f (y) (1)

where k is a real number different from 0 and 1, is said to be the k-cubic functional equation which is introduced
by the second author.

Note that, if we replace x = y = 0 in the equation (1), then we get f (0) = 0. Therefore, setting x = x
and y = 0 in the equation (1), we obtain f (kx) = (k3) f (x), i.e., f (x) = kx3 is its solution. Every solution of
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the k-cubic functional equations is said to be a cubic mapping. The stability problem for the cubic functional
equations was studied by Jun and Kim [28] for mappings f : X −→ Y, where X is a real normed space and
Y is a Banach space. Later, a number of mathematicians worked on the stability of some types of cubic
equations [19, 20, 29, 34, 46]. Furthermore, Mirmostafaee, Mirzavaziri and Moslehian [32], Alsina [4], Miheţ
and Radu [31] investigated the stability in the settings of fuzzy, probabilistic and random normed spaces.

2. Preliminaries

In this section, we recall some definitions and results which are needed to prove our main results.

A triangular norm (shorter t-norm) is a binary operation on the unit interval [0, 1], i.e., a function T :
[0, 1] × [0, 1]→ [0, 1] such that the following four axioms are satisfied: for all a, b, c ∈ [0, 1],

(1) T(a, b) = T(b, a) (: commutativity);
(2) T(a, (T(b, c))) = T(T(a, b), c) (: associativity);
(3) T(a, 1) = a (: boundary condition);
(4) T(a, b) ≤ T(a, c) whenever b ≤ c (: monotonicity).

Basic examples are the Łukasiewicz t-norm TL, TL(a, b) = max{a + b − 1, 0} for all a, b ∈ [0, 1] and the
t-norms TP, TM, TD, where TP(a, b) := ab, TM(a, b) := min{a, b},

TD(a, b) :=
{

min{a, b}, if max{a, b} = 1;
0, otherwise.

If T is a t-norm then x(n)
T is defined for all x ∈ [0, 1] and n ≥ 0 by 1, if n = 0 and T(x(n−1)

T , x), if n ≥ 1. A
t-norm T is said to be of Hadžić-type (we denote by T ∈ H) if the family {x(n)

T } is equicontinuous at x = 1 (cf.
[22]).

Other important triangular norms are (see [23]):

(1) The Sugeno-Weber family {TSW
λ }λ∈[−1,∞] is defined by TSW

−1 = TD, TSW
∞ = TP and

TSW
λ (x, y) = max

{
0,

x + y − 1 + λxy
1 + λ

}
if λ ∈ (−1,∞).

(2) The Domby family {TD
λ }λ∈[0,∞] defined by TD, if λ = 0, TM, if λ = ∞ and

TD
λ (x, y) =

1

1 + (( 1−x
x )λ + ( 1−y

y )λ)1/λ

if λ ∈ (0,∞).
(3) The Aczel-Alsina family {TAA

λ }λ∈[0,∞] defined by TD, if λ = 0, TM, if λ = ∞ and

TAA
λ (x, y) = e−(|log x|λ+|log y|λ)1/λ

if λ ∈ (0,∞).

A t-norm T can be extended (by associativity) in a unique way to an n-array operation taking for
(x1, · · · , xn) ∈ [0, 1]n the value T(x1, · · · , xn) defined by

T0
i=1xi = 1,Tn

i=1xi = T(Tn−1
i=1 xi, xn) = T(x1, · · · , xn).

The t-norm T can also be extended to a countable operation taking, for any sequence {xn} in [0, 1], the
value

T∞i=1xi = lim
n→∞

Tn
i=1xi. (2)
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The limit on the right side of (2) exists since the sequence {Tn
i=1xi}n≥1 is non-increasing and bounded from

below.

Proposition 2.1. ([23]) (1) For any T ≥ TL, the following implication holds:

lim
n→∞

T∞i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1 − xn) < ∞.

(2) If T is of Hadžić-type, then
lim
n→∞

T∞i=1xn+i = 1

for any sequence {xn} in [0, 1] such that limn→∞ xn = 1.
(3) If T ∈ {TAA

λ }λ∈(0,∞) ∪ {TD
λ }λ∈(0,∞), then

lim
n→∞

T∞i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1 − xn)α < ∞.

(4) If T ∈ {TSW
λ }λ∈[−1,∞), then

lim
n→∞

T∞i=1xn+i = 1 ⇐⇒

∞∑
n=1

(1 − xn) < ∞.

3. L-Fuzzy Normed Spaces

The theory of fuzzy sets was introduced by Zadeh in 1965 [47]. After the pioneering work of Zadeh, there
has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive
development has been made in the field of fuzzy topology [3, 15–17, 24, 39]. One of the problems inL-fuzzy
topology is to obtain an appropriate concept ofL-fuzzy metric spaces andL-fuzzy normed spaces. Saadati
and Park [40], respectively, introduced and studied a notion of intuitionistic fuzzy metric (normed) spaces
and then Deschrijver, Saadati and et. al. generalized the concept of intuitionistic fuzzy metric (normed)
spaces and introduced and studied a notion of L-fuzzy metric spaces and L-fuzzy normed spaces (se
[13, 41]).

In this section, we give some definitions and related lemmas for our main results.

Definition 3.1. ([18]) Let L = (L,≤L) be a complete lattice and U be a nonempty set called the universe. A
L-fuzzy setA on U is defined as a mappingA : U −→ L. For each u in U,A(u) represents the degree (in L)
to which u satisfiesA.

Lemma 3.2. ([14]) Consider the set L∗ and operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},

(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2

for all (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗ ) is a complete lattice.

Definition 3.3. ([6]) An intuitionistic fuzzy setAζ,η on a universe U is an objectAζ,η = {(ζA(u), ηA(u)) : u ∈ U},
where, for all u ∈ U, ζA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1] are called the membership degree and the non-membership
degree, respectively, of u inAζ,η and, furthermore, satisfy ζA(u) + ηA(u) ≤ 1.



R. Saadati, Y.J. Cho, J.M. Rassias / Filomat 29:5 (2015), 1137–1148 1140

In section 2, we presented the classical definition of t-norm, which can be easily extended to any lattice
L = (L,≤L). Define first 0L = inf L and 1L = sup L.

Definition 3.4. A triangular norm (shortly, t-norm) on L is a mapping T : L2
→ L satisfying the following

conditions:
(1) T (x, 1L) = x for all x ∈ L (: boundary condition);
(2) T (x, y) = T (y, x) for all (x, y) ∈ L2 (: commutativity);
(3) T (x,T (y, z)) = T (T (x, y), z) for all (x, y, z) ∈ L3 (: associativity);
(4) x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′) for all (x, x′, y, y′) ∈ L4 (: monotonicity).

A t-norm can also be defined recursively as an (n + 1)-array operation (n ≥ 1) by T 1 = T and

T
n(x(1), · · · , x(n+1)) = T (T n−1(x(1), · · · , x(n)), x(n+1))

for all n ≥ 2 and x(i) ∈ L.

The t-norm M defined by

M(x, y) =

{
x if x ≤L y,
y if y ≤L x,

is a continuous t-norm.

Definition 3.5. A t-norm T on L∗ is said to be t-representable if there exist a t-norm T and a t-conorm S on [0, 1]
such that

T (x, y) = (T(x1, y1),S(x2, y2))

for all x = (x1, x2), y = (y1, y2) ∈ L∗.

Definition 3.6. A negation on L is any strictly decreasing mapping N : L → L satisfying N(0L) = 1L and
N(1L) = 0L. IfN(N(x)) = x for all x ∈ L, thenN is called an involutive negation.

In this paper, let N : L → L be a given mapping. The negation Ns on ([0, 1],≤) defined as Ns(x) = 1 − x
for all x ∈ [0, 1] is called the standard negation on ([0, 1],≤).

Definition 3.7. The 3-tuple (V,P,T ) is said to be a L-fuzzy normed space if V is a vector space, T is a
continuous t-norm on L and P is a L-fuzzy set on V × (0,+∞) satisfying the following conditions: for all
x, y ∈ V and t, s ∈ (0,+∞),

(1) 0L <L P(x, t);
(2) P(x, t) = 1L if and only if x = 0;
(3) P(αx, t) = P(x, t

|α| ) for all α , 0;
(4) T (P(x, t),P(y, s)) ≤L P(x + y, t + s);
(5) P(x, ·) : (0,∞)→ L is continuous;
(6) limt→0P(x, t) = 0L and limt→∞P(x, t) = 1L.
In this case, P is called a L-fuzzy norm. If P = Pµ,ν is an intuitionistic fuzzy set and the t-norm T is

t-representable, then the 3-tuple (V,Pµ,ν,T ) is said to be an intuitionistic fuzzy normed space (IFN-space) (see
[40] and [43]).

Definition 3.8. (1) A sequence {xn} in X is called a Cauchy sequence if, for any ε ∈ L \ {0L} and t > 0, there
exists a positive integer n0 such that

N(ε) <L P(xn+p − xn, t)

for all n ≥ n0 and p > 0.
(2) If every Cauchy sequence is convergent, then theL-fuzzy norm is said to be complete and theL-fuzzy

normed space is called a L-fuzzy Banach space, whereN is an involutive negation.
(3) The sequence {xn} is said to be convergent to a point x ∈ V in the L-fuzzy normed space (V,P,T )

(denoted by xn
P
−→ x) if P(xn − x, t)→ 1L whenever n→ +∞ for all t > 0.
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Lemma 3.9. ([43]) Let P be a L-fuzzy norm on V. Then
(1) P(x, t) is nondecreasing with respect to t for all x ∈ V.
(2) P(x − y, t) = P(y − x, t) for all x, y ∈ V and t ∈ (0,+∞).

Definition 3.10. Let (V,P,T ) be a L-fuzzy normed space. For any t ∈ (0,+∞), we define the open ball
B(x, r, t) with center x ∈ V and radius r ∈ L \ {0L, 1L} by

B(x, r, t) = {y ∈ V : N(r) <L P(x − y, t)}.

4. Stability Result inL-fuzzy Normed Spaces

In this section, we study the stability of functional equations in L-fuzzy normed spaces.

Theorem 4.1. Let X be a linear space and (Y,P,T ) be a completeL-fuzzy normed space. If f : X→ Y is a mapping
with f (0) = 0 and Q is a L-fuzzy set on X2

× (0,∞) with the following property:

P(2[k f (x + ky) + f (kx − y)] − k(k2 + 1)[ f (x + y) + f (x − y)] − 2(k4
− 1) f (y), t)

≥L Q
(
x, y, t

2

)
. (3)

If

T
∞

i=1(Q(kn+i−1x, 0, k3n+2i+1t)) = 1L

and

lim
n→∞

Q(knx, kny, k3nt) = 1L

for all x, y ∈ X and t > 0, then there exists a unique k-cubic mapping C : X −→ Y such that

P( f (x) − C(x), t) ≥L T
∞

i=1(Q(ki−1x, 0, k2i+2t)). (4)

Proof. We brief the proof because it is similar as the random case [1], and [48] also [2]. Putting y = 0 in (3),
we have

P

(
f (kx)

k3 − f (x), t
)
≥L∗ Q(x, 0, k3t).

Therefore, it follows that

P

(
f (k j+1x)
k3( j+1)

−
f (k jx)

k3 j ,
t

k j+1

)
≥L Q(k jx, 0, k2( j+1)t)

for all j ≥ 1 and t > 0. By the triangle inequality, it follows that

P

( f (knx)
k3n − f (x), t

)
≥L T

n
i=1(Q(ki−1x, 0, k2i+2t)). (5)

In order to prove the convergence of the sequence
{ f (knx)

k3n

}
, we replace x with kmx in (5) to find that, for

all m,n > 0,

P

( f (kn+mx)
k3(n+m)

−
f (kmx)

k3m , t
)
≥L T

n
i=1(Q(ki+m−1x, 0, k2i+3m+2t)).

Since the right hand side of the inequality tends to 1L as m tends to ∞, the sequence
{ f (knx)

k3n

}
is a Cauchy

sequence. Thus we may define C(x) = limn→∞
f (knx)

k3n for all x ∈ X. Replacing x, y with knx and kny,
respectively, in (3), it follows that C is a k-cubic mapping. To prove (4), take the limit as n→∞ in (5).
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To prove the uniqueness of the k-cubic mapping C subject to (4), let us assume that there exists another
k-cubic mapping C′ which satisfies (4). Obviously, we have C(knx) = k3nC(x) and C′(knx) = k3nC′(x) for all
x ∈ X and n ≥ 1. Hence it follows from (4) that

P

(
C(x) − C′(x), t

)
≥L P

(
C(knx) − C′(knx), k33nt

)
≥L T

(
P

(
C(knx) − f (knx), k3n−1t

)
,P

(
f (knx) − C′(knx), 23n−1t

))
≥L T

(
T
∞

i=1(Q(kn+i−1x, 0, k3n+2i+1t)),T∞i=1(Q(kn+i−1x, 0, k3n+2i+1t)
)

= T (1L, 1L) = 1L
for all x ∈ X. This proves the uniqueness of C. This completes the proof.

Corollary 4.2. Let (X,P′µ′,ν′ ,T ) be IFN-space and (Y,Pµ,ν,T ) be a complete IFN-space. Let f : X −→ Y be a
mapping such that

Pµ,ν(2[k f (x + ky) + f (kx − y)] − k(k2 + 1)[ f (x + y) + f (x − y)] − 2(k4
− 1) f (y), t)

≥L∗ P
′
µ′,ν′

(
x + y,

t
2

)
for all t > 0 in which

lim
n−→∞

T
∞

i=1(P′µ′,ν′ (kn+i−1x, k3n+2i+1t)) = 1L∗

for all x, y ∈ X. Then there exists a unique k-cubic mapping C : X −→ Y such that

Pµ,ν( f (x) − C(x), t) ≥L∗ T
∞

i=1(P′µ′,ν′ (ki−1x, k2i+2t)).

Proof. In Theorem 4.1, put Q
(
x, y, t

)
= P′µ′,ν′

(
x + y, t

)
. Therefore, all the conditions of Theorem 4.1 hold

and so there exists a unique k-cubic mapping C : X −→ Y such that

Pµ,ν( f (x) − C(x), t) ≥L∗ T
∞

i=1(P′µ′,ν′ (ki−1x, k2i+2t)).

Now, we give one example to illustrate the main results of Theorem 4.1, as follows:

Example 4.3. Let (X, ‖ · ‖) be a Banach algebra space, (X,Pµ,ν,M) be IFN-space in which

Pµ,ν(x, t) =
( t
t + ‖x‖

,
‖x‖

t + ‖x‖

)
and (Y,Pµ,ν,M) be a complete IFN-space for all x ∈ X. Define a mapping f : X −→ Y by f (x) = x3 + x0,
where x0 is a unit vector in X. A straightforward computation shows that

Pµ,ν(2[k f (x + ky) + f (kx − y)] − k(k2 + 1)[ f (x + y) + f (x − y)] − 2(k4
− 1) f (y), t)

≥L∗ Pµ,ν

(
x + y,

t
2

)
for all t > 0. Also, we have

lim
n−→∞

M∞

i=1(Pµ,ν(kn+i−1x, k3n+2i+1t)) = lim
n−→∞

lim
m−→∞

Mm
i=1(Pµ,ν(x, k2n+i+2t))

= lim
n−→∞

lim
m−→∞

Pµ,ν(x, k2n+3t)

= lim
n−→∞

Pµ,ν(x, k2n+3t)

= 1L∗ .

Therefore, all the conditions of Theorem 4.1 hold and so there exists a unique k-cubic mapping C : X −→ Y
such that

Pµ,ν( f (x) − C(x), t) ≥L∗ Pµ,ν(x, k4t).
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5. Non-ArchimedeanL-fuzzy Normed Spaces

In 1897, Hensel [27] introduced a field with a valuation in which does not have the Archimedean
property.

Definition 5.1. LetK be a field. A non-Archimedean absolute value onK is a function | · | : K → [0,+∞) such
that, for any a, b ∈ K ,

(1) |a| ≥ 0 and equality holds if and only if a = 0;
(2) |ab| = |a||b|;
(3) |a + b| ≤ max{|a|, |b|} (: the strict triangle inequality).

Note that |n| ≤ 1 for each integer n. We always assume, in addition, that | · | is non-trivial, i.e., there exists
a0 ∈ K such that |a0| , 0, 1.

Definition 5.2. A non-Archimedean L-fuzzy normed space is a triple (V,P,T ), where V is a vector space, T is
a continuous t-norm on L and P is a L-fuzzy set on V × (0,+∞) satisfying the following conditions: for all
x, y ∈ V and t, s ∈ (0,+∞),

(1) 0L <L P(x, t);
(2) P(x, t) = 1L if and only if x = 0;
(3) P(αx, t) = P(x, t

|α| ) for all α , 0;
(4) T (P(x, t),P(y, s)) ≤L P(x + y,max{t, s});
(5) P(x, ·) : (0,∞)→ L is continuous;
(6) limt→0P(x, t) = 0L and limt→∞P(x, t) = 1L.

Example 5.3. Let (X, ‖ · ‖) be a non-Archimedean normed linear space. Then the triple (X,P,min), where

P(x, t) =

{
0, if t ≤ ‖x‖,
1, if t > ‖x‖,

is a non-Archimedean L-fuzzy normed space in which L = [0, 1].

Example 5.4. Let (X, ‖·‖) be is a non-Archimedean normed linear space. DenoteTM(a, b) = (min{a1, b1},max{a2, b2})
for all a = (a1, a2), b = (b1, b2) ∈ L∗ and letPµ,ν be the intuitionistic fuzzy set on X× (0,+∞) defined as follows:

Pµ,ν(x, t) =
( t

t + ‖x‖
,
‖x‖

t + ‖x‖

)
for all t ∈ R+. Then (X,Pµ,ν,TM) is a non-Archimedean intuitionistic fuzzy normed space.

6. L-Fuzzy Hyers-Ulam-Rassias Stability for k-cubic Functional Equations in Non-Archimedean L-
fuzzy Normed Space

Let K be a non-Archimedean field, X be a vector space over K and (Y,P,T ) be a non-Archimedean
L-fuzzy Banach space overK . In this section, we investigate the stability of the k-cubic functional equation
(1).

Next, we define a L-fuzzy approximately k-cubic mapping.

Let Ψ be a L-fuzzy set on X × X × [0,∞) such that Ψ(x, y, ·) is nondecreasing,

Ψ(cx, cx, t) ≥L Ψ
(
x, x,

t
|c|

)
for all x ∈ X and c , 0 and

lim
t→∞

Ψ(x, y, t) = 1L

for all x, y ∈ X and t > 0.
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Definition 6.1. A mapping f : X→ Y is said to be Ψ-approximately k-cubic if

P(2[k f (x + ky) + f (kx − y)] − k(k2 + 1)[ f (x + y) + f (x − y)] − 2(k4
− 1) f (y), t)

≥L Ψ
(
x, y, t

|2|

)
(6)

for all x, y ∈ X and t > 0.

Here, we assume that k , 0 inK (i.e., the characteristic ofK is not k).

Theorem 6.2. Let K be a non-Archimedean field, X be a vector space over K and (Y,P,T ) be a non-Archimedean
L-fuzzy Banach space over K . Let f : X → Y be a Ψ-approximately k-cubic mapping. If there exist α ∈ R (α > 0)
and an integer ` ≥ 2 with |k`| < α and |k| , 1 such that

Ψ(k−`x, k−`y, t) ≥L Ψ(x, y, αt) (7)

for all x ∈ X and t > 0 and

lim
n→∞
T
∞

j=nM

(
x,
α jt
|k|` j

)
= 1L

for all x ∈ X and t > 0, then there exists a unique k-cubic mapping C : X→ Y such that

P( f (x) − C(x), t) ≥ T∞i=1M

(
x,
αi+1t
|k|`i

)
(8)

for all x ∈ X and t > 0, where

M(x, t) := T (Ψ(x, 0, t),Ψ(kx, 0, t), · · · ,Ψ(k`−1x, 0, t))

for all x ∈ X and t > 0.

Proof. First, we show, by induction on j, that, for all x ∈ X, t > 0 and j ≥ 1,

P( f (k jx) − k3 j f (x), t) ≥L M j(x, t) := T (Ψ(x, 0, t), · · · ,Ψ(k j−1x, 0, t)). (9)

Putting y = 0 in (6), we obtain

P( f (kx) − k3 f (x), t) ≥L Ψ(x, 0, t)

for all x ∈ X and t > 0. This proves (9) for j = 1. Let (9) hold for some j > 1. Replacing y by 0 and x by k jx
in (6), we get

P( f (k j+1x) − k3 f (k jx), t) ≥L Ψ(k jx, 0, t)

for all x ∈ X and t > 0. Since |k3
| ≤ 1, it follows that

P( f (k j+1x) − k3 j+3 f (x), t)

≥L T
(
P( f (k j+1x) − k3 f (k jx), t),P(k3 f (k jx) − k3 j+3 f (x), t)

)
= T

(
P( f (k j+1x) − k3 f (3 jx), t),P

(
f (k jx) − k3 j f (x),

t
|k3|

) )
≥L T

(
P( f (k j+1x) − k3 f (k jx), t),P

(
f (k jx) − k3 j f (x), t

) )
≥L T (Ψ(k jx, 0, t),M j(x, t))
=M j+1(x, t)
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for all x ∈ X and t > 0. Thus (9) holds for all j ≥ 1. In particular, we have

P( f (k`x) − k3` f (x), t) ≥L M(x, t) (10)

for all x ∈ X and t > 0. Replacing x by k−(`n+`)x in (10) and using the inequality (7), we obtain

P

(
f
( x

k`n

)
− k3` f

( x
k`n+`

)
, t
)
≥L M

( x
k`n+`

, t
)
≥L M(x, αn+1t)

for all x ∈ X, t > 0 and n ≥ 0 and so

P

(
(k3`)n f

(
x

(k`)n

)
− (k3`)n+1 f

(
x

(k`)n+1

)
, t
)
≥L M

(
x,

αn+1

|(k3`)n|
t
)
≥L M

(
x,
αn+1

|(k`)n|
t
)

for all x ∈ X, t > 0 and n ≥ 0. Hence it follow that

P

(
(k3`)n f

(
x

(k`)n

)
− (k3`)n+p f

(
x

(k`)n+p

)
, t
)

≥L T
n+p
j=n

(
P((k3`) j f

(
x

(k`) j

)
− (k3`) j+p f

(
x

(k`) j+p

)
, t)

)
≥L T

n+p
j=nM

(
x,
α j+1

|(k`) j|
t
)

for all x ∈ X, t > 0 and n ≥ 0. Since limn→∞ T
∞

j=nM
(
x, α

j+1

|(k`) j |
t
)

= 1L for all x ∈ X and t > 0,
{
(k3`)n f

(
x

(k`)n

)}
n∈N

is a Cauchy sequence in the non-Archimedean L-fuzzy Banach space (Y,P,T ). Hence we can define a
mapping C : X→ Y such that

lim
n→∞
P

(
(k3`)n f

(
x

(k`)n

)
− C(x), t

)
= 1L (11)

for all x ∈ X and t > 0. Next, for all n ≥ 1, x ∈ X and t > 0, we have

P

(
f (x) − (k3`)n f

(
x

(k`)n

)
, t
)

= P

n−1∑
i=0

(k3`)i f
(

x
(k`)i

)
− (k3`)i+1 f

(
x

(k`)i+1

)
, t


≥L T

n−1
i=0

(
P((k3`)i f

(
x

(k`)i

)
− (k3`)i+1 f

(
x

(k`)i+1

)
, t)

)
≥L T

n−1
i=0 M

(
x,
αi+1t
|k`|i

)
and so

P( f (x) − C(x), t) (12)

≥L T

(
P( f (x) − (k3`)n f

(
x

(k`)n

)
, t),P((k3`)n f

(
x

(k`)n

)
− C(x), t)

)
≥L P

(
T

n−1
i=0 M

(
x,
αi+1t
|k`|i

)
,P((k3`)n f

(
x

(k`)n

)
− C(x), t)

)
.

Taking the limit as n→∞ in (12), we obtain

P( f (x) − C(x), t) ≥L T
∞

i=1M

(
x,
αi+1t
|k`|i

)
,
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which proves (8). As T is continuous, from a well known result in L-fuzzy (probabilistic) normed space
(see [44], Chapter 12), it follows that

lim
n→∞
P((k3`n)2[k f (k−`n(x + ky)) + f (k−`n(x − ky))]

−k3`nk(k2 + 1)[ f ((k−`n(x + y)) + f ((k−`n(x − y))] − 2k3`n(k4
− 1) f ((k−`ny), t)

= P(2[kC(x + ky) + C(kx − y)] − k(k2 + 1)[C(x + y) + C(x − y)] − 2(k4
− 1)C(y), t)

for almost all t > 0.
On the other hand, replacing x, y by k−`nx, k−`ny in (6) and (7), we get

P((k3`n)2[k f (k−`n(x + ky)) + f (k−`n(x − ky))]
−k3`nk(k2 + 1)[ f ((k−`n(x + y)) + f ((k−`n(x − y))] − 2k3`n(k4

− 1) f ((k−`ny), t)

≥L Ψ

(
k−`nx, k−`ny,

t
|k3`|n

)
≥L Ψ

(
x, y,

αnt
|k`|n

)
for all x, y ∈ X and t > 0. Since limn→∞Ψ

(
x, y, α

nt
|k` |n

)
= 1L, we infer that C is a k-cubic mapping.

Finally, for the uniqueness of C, let C ′ : X→ Y be another k-cubic mapping such that

P(C ′(x) − f (x), t) ≥L M(x, t)

for all x ∈ X and t > 0. Then we have, for all x ∈ X and t > 0,

P(C(x) − C ′(x), t)

≥L T

(
P(C(x) − (k3`)n f

(
x

(k`)n

)
, t),P((k3`)n f

(
x

(k`)n

)
− C ′(x), t), t)

)
.

Therefore, from (11), we conclude that C = C ′. This completes the proof.

Corollary 6.3. Let K be a non-Archimedean field, X be a vector space over K and (Y,P,T ) be a non-Archimedean
L-fuzzy Banach space overK under a t-norm T ∈ H . Let f : X→ Y be a Ψ-approximately cubic mapping. If there
exist α ∈ R (α > 0), |k| , 1 and an integer ` ≥ 2 with |k`| < α such that

Ψ(k−`x, k−`y, t) ≥L Ψ(x, y, αt)

for all x, y ∈ X and t > 0, then there exists a unique k-cubic mapping C : X→ Y such that

P( f (x) − C(x), t) ≥L T
∞

i=1M

(
x,
αi+1t
|k|`i

)
for all x ∈ X and t > 0, where

M(x, t) := T (Ψ(x, 0, t),Ψ(kx, 0, t), · · · ,Ψ(k`−1x, 0, t))

for all x ∈ X and t > 0.

Proof. Since

lim
n→∞
M

(
x,
α jt
|k|` j

)
= 1L

for all x ∈ X and t > 0 and T is of Hadžić type, it follows from Proposition 2.1 that

lim
n→∞
T
∞

j=nM

(
x,
α jt
|k|` j

)
= 1L

for all x ∈ X and t > 0. Now, if we apply Theorem 6.2, we get the conclusion. This completes the proof.

Now, we give an example to validate the main result as follows:
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Example 6.4. Let (X, ‖ · ‖) be a non-Archimedean Banach space, (X,Pµ,ν,TM) be non-Archimedean L-fuzzy
normed space (intuitionistic fuzzy normed space) in which

Pµ,ν(x, t) =
( t
t + ‖x‖

,
‖x‖

t + ‖x‖

)
for all x ∈ X and t > 0 and (Y,Pµ,ν,TM) be a complete non-ArchimedeanL-fuzzy normed space (intuitionistic
fuzzy normed space) (see Example 5.4). Define

Ψ(x, y, t) =
( t

1 + t
,

1
1 + t

)
.

It is easy to see that (7) holds for α = 1. Also, since

M(x, t) =
( t

1 + t
,

1
1 + t

)
,

we have

lim
n→∞
T
∞

M, j=nM

(
x,
α jt
|k|` j

)
= lim

n→∞

(
lim

m→∞
T

m
M, j=nM

(
x,

t
|k|` j

))
= lim

n→∞
lim

m→∞

(
t

t + |k`|n
,
|k`|n

t + |k`|n

)
= (1, 0) = 1L∗

for all x ∈ X and t > 0. Let f : X→ Y be a Ψ-approximately k-cubic mapping. Therefore, all the conditions
of Theorem 6.2 hold and so there exists a unique k-cubic mapping C : X −→ Y such that

Pµ,ν( f (x) − C(x), t) ≥L∗

(
t

t + |k`|
,
|k`|

t + |k`|

)
for all x ∈ X and t > 0.

7. Conclusion

We established the Hyers-Ulam-Rassias stability of the k-cubic functional equations (1) in various fuzzy
spaces. In section 4, we proved the stability of functional equations (1) in a L-fuzzy normed space under
an arbitrary t-norm which is a generalization of [33]. In section 6, we proved the stability of functional
equations (1) in a non-Archimedean L-fuzzy normed space. Therefore, we provided a link among three
various discipline: fuzzy set theory, lattice theory and mathematical analysis.
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